Energy Efficiency:
Tractors and Field Machines

Energy in Agriculture 2017

Dermot Forristal

Teagasc CELUP
Oak Park Crops Research
Field Operations

- Significant Impact on Energy Use
 - Impacts on Costs (Fuel but also other costs)
 - Impacts on Carbon Footprint/Balance
 - Impacts on factors such as workrate and sustainability also
Outline

♦ Impact of energy on fuel and costs
♦ Machine energy saving options:
 ♦ Systems
 ♦ Machines and settings
 ♦ Tractors and fuel
♦ Other factors
♦ Grassland machinery options
Energy and Fuel - not the same

♦ Farmers / Contractors think of fuel
 ▶ Focus on fuel savings
♦ Energy savings can be much greater!
♦ Two sources
 ▶ Fuel efficiency of tractors/engines: Fuel
 ▶ Energy savings
 ▶ Machine types and settings
 ▶ Machine system
 ▶ Transport etc

Other cost savings

The Irish Agriculture and Food Development Authority

Ceagasc
Agriculture and Food Development Authority
Double benefit!

Reduce Energy:
Reduces fuel costs
Can Reduce Other Costs Also e.g.
- Machine wear
- Depreciation
- Frequently less Labour

\[2-3 \times \text{Fuel saving}\]
Example: Plough depth

Plough at 125mm vs 250mm

<table>
<thead>
<tr>
<th></th>
<th>Std depth</th>
<th>Half depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plough cost</td>
<td>€28.47</td>
<td>€14.23</td>
</tr>
<tr>
<td>Tractor cost</td>
<td>€29.52</td>
<td>€14.76</td>
</tr>
<tr>
<td>Fuel</td>
<td>€15.12</td>
<td>€7.60</td>
</tr>
<tr>
<td>Labour</td>
<td>€13.02</td>
<td>€6.51</td>
</tr>
<tr>
<td>Total</td>
<td>€86.13</td>
<td>€43.10</td>
</tr>
</tbody>
</table>

Impacts:
- Workrate
- Fuel
- Labour
- Machine depreciation
- Machine wear / tear

The Irish Agriculture and Food Development Authority
Fuel price and costs

Cereal production

Field operations: (excl transport, straw etc)

85 litres/ha

€54 / ha
Machine Energy Saving Options

♦ Change of System
♦ Machine Type and Setting
♦ Matching machines within System
♦ Tractors / Power Units
♦ Operation in the Field
♦ Ground drive and Tyres
♦ (Tillage) Grassland
Non-Machine Factors

- Soil type - heavier soils ➞ more fuel!
- Crop Choice (other factors determine)
- Weather

- Distance between land blocks
 - Size of blocks
 - Block cropping
 - Field size/shape
Factors: Block distance, size, crops. Base locations

Costs: Fuel, Labour, Depreciation, Repairs

- €150/ha extra total
- Approx 58 litre/ha extra fuel
- >50% extra fuel!
Coping with land distance issues

- Know the impact on costs
- Value land based on its location
- Pick crops to suit and match block size to machinery capacity
- Swap land with others if it makes sense
- Use ‘local’ contractor if sensible
Machine Energy Saving Options

- Change of System
- Machine Type and Setting
- Matching machines within System
- Tractors / Power Units
- Operation in the Field
- Ground drive and Tyres
- (Tillage) Grassland
Changing system

- Tillage System - Step Change Possible
- Fuel/Energy proportional to:
 - Tillage Intensity
 - Tillage Depth
Plough 225mm deep
+ Secondary cultivation
+ Sowing + Rolling
Min-till 80mm deep
+ Cultivator drill
Minimum Tillage and Fuel

- Plough one pass
- Plough/Drill
- Min till (1)
- Min till (2)

- Roll
- Till/Sow
- Primary

Fuel l/ha
Fuel Savings

Min- Till

- Less than 50% energy input possible
 - 50% fuel (20 litre/ha) saving
 - Similar machine cost savings for cultivation:

- But!! Other factors:
 - Grass weeds
 - Autumn establishment in wetter climate
 - Sustainability
 - Deeper Min-till: more fuel
Direct drilling: lower energy

Direct Drilling
- Further fuel saving possible
- But further challenges in our climate

The Irish Agriculture and Food Development Authority
Machine Fuel Saving Options

- Change of System
- **Machine Type and Setting**
 - Matching machines within System
 - Tractors / Power Units
 - Operation in the Field
 - Ground drive and Tyres
 - (Tillage) Grassland

The Irish Agriculture and Food Development Authority
Depth and Intensity

- Ploughing 18 - 30 litres/ha
- Modern ploughing
 - Typically 250mm Deep
 - 175mm Vs 250mm = >30% Energy + fuel saving!
- Why do we plough so deep?
 - Because we can; Looks well; Loosens.
 - Could we plough less deep?
 - Plough shallow 3 years in 4
Shallow ploughing saves fuel

100mm Ploughing !!
Intensity

- Cultivate shallow and as little as required
- Know your soils
 - e.g. Work heavy soils carefully, avoiding creating clods which require huge energy for subsequent breakdown
- Only do what is necessary
 - Better for Energy / Fuel
 - Better for Soils
- Choose simpler systems
Settings and Maintenance

- Settings can affect fuel use:
 - Plough draft
 - Replacement of worn parts
 - Correct setting of all machine components:
 - Clearances, Speeds, Depth
 - Tractor maintenance

- Tractor Power: don’t notice the difference!
- Consult the Instruction Manual!
Machine Fuel Saving Options

- Change of System
- Machine Type and Setting

Matching machines within System
- Tractors / Power Units
- Operation in the Field
- Ground drive and Tyres
- (Tillage) Grassland
Matching Machines

- Aim for a balanced machinery system.
- Match tractors to implements
- Unloaded tractor engines less efficient
- E.g. 5F plough decision:
 - Bigger tractor required (120kW)
 - Over-sized for other operations?
- Choose lighter machines if possible
Machine Fuel Saving Options

- Change of System
- Machine Type and Setting
- Matching machines within System

- Tractors / Power Units
- Operation in the Field
- Ground drive and Tyres
- (Tillage) Grassland
Tractor Make and Model?

♦ Individual models from three brand leaders:
♦ 6 cylinder 85kW (115hp) approx
♦ Specific Fuel Consumption (g/kWh - OECD)

♦ Warning!
 ▶ Models within brands differ
 ▶ Emissions changes (NOX, PM) forcing change
 ▶ Tier II, IIIb etc
 ▶ Often 'Poorer' Fuel Consumption
Tractor Fuel Use

- 18% difference
What's that worth?

- **Heavy work mix:**
 - 17 vs 18.3 vs 19.3 litres/hour (14% range)
 - **2.25** litres/hour difference

- **Light - Medium work mix:**
 - 12.3 vs 13.5 vs 13.46 litres/hour (9% range)
 - **1.17** litres/hour difference
<table>
<thead>
<tr>
<th>Annual Hours</th>
<th>Diesel Price €/litre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>500</td>
<td>620</td>
</tr>
<tr>
<td>1000</td>
<td>1241</td>
</tr>
<tr>
<td>1500</td>
<td>1862</td>
</tr>
</tbody>
</table>
Annual difference (€)-Light-Medium

<table>
<thead>
<tr>
<th>Diesel Price €/litre</th>
<th>0.55</th>
<th>0.70</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>322</td>
<td>409</td>
<td>584</td>
</tr>
<tr>
<td>1000</td>
<td>644</td>
<td>819</td>
<td>1170</td>
</tr>
<tr>
<td>1500</td>
<td>965</td>
<td>1228</td>
<td>1750</td>
</tr>
</tbody>
</table>

Ceagasc

The Irish Agriculture and Food Development Authority
Machine Fuel Saving Options

- Change of System
- Machine Type and Setting
- Matching machines within System
- Tractors / Power Units

Operation in the Field

- Ground drive and Tyres
- (Tillage) Grassland
Operation in the Field

♦ Loaded engines are efficient
 ▶ Match implement to tractor
 ▶ Make the most of torque characteristics
 ▶ Shift up and throttle back
 ▶ Understand sophisticated transmissions
 ▶ Use economy PTO

♦ Efficient Work Patterns in Field
♦ Turn off engines when not working!
Machine Fuel Saving Options

♦ Change of System
♦ Machine Type and Setting
♦ Matching machines within System
♦ Tractors / Power Units
♦ Operation in the Field

♦ Ground Drive and Tyres
♦ Tillage Grassland
Ground Drive / Tyres

♦ Field – Cultivation + Soft conditions
 ▶ Reduce sinkage and Rolling Resistance
 ▶ Reduce wheel slip
 ▶ Larger tyres ➔ Lower pressures
 ▶ Reduce weight, Correct tyre pressure

♦ Road – Very hard conditions
 ▶ Smaller tyres, higher pressures
 ➔ Less tyre flexing
Larger Tyre
Lower Pressure
Less sinkage
Less Fuel
Machine Fuel Saving Options

- Change of System
- Machine Type and Setting
- Matching machines within System
- Tractors / Power Units
- Operation in the Field
- Ground drive and Tyres

(Tillage) Grassland
Grassland Farms

- Huge variations in fuel depending on system
- Summer grazing vs Intensive feeding
- Variable scope for fuel saving.

Silage making
- Step Change = Precision Chop Vs Wagon
- 50% harvester fuel saving = 25-30% overall
- Machine selection, matching and operation
- Wilting: reduces weight and costs
 - 33t/ha at 18% DM = 17t at 35%DM
Grassland Farms - Other

- Reduce: topping, rolling, spiking.
- Winter feeding system
- 5t Tractor to herd cattle?
- 4WD Jeep: not very fuel efficient
- Maintenance
- Centralised land base will save fuel
 - Silage + Slurry expensive to transport
Know your fuel use

♦ Accurate Information Scarce
 ▶ National and Farm level - Std Figures limited

♦ Record annual fuel use
 ▶ Stocks and Contractor use: challenging
 ▶ Total annual info difficult to analyse

♦ Single-operation analysis (e.g. Plough):
 ▶ Brim to brim measurement with fuel meter
 ▶ Accurate work recording
 ▶ Using on-board tractor fuel meter (check accuracy)
Bulk fuel meter + In Cab Monitor
Conclusions

Energy / Fuel ➔ priority

♦ System choice is essential
♦ Machines
 » Choose Wisely
 » Set / Adjust Correctly
 » Use Wisely
♦ Land Fragmentation needs to be considered
Conclusions

Energy / Fuel ➔ priority

♦ System choice is essential
♦ Machines
 » Choose Wisely
 » Set / Adjust Correctly
 » Use Wisely
♦ Land Fragmentation needs to be considered